Subnetwork-Specific Homeostatic Plasticity in Mouse Visual Cortex In Vivo
نویسندگان
چکیده
Homeostatic regulation has been shown to restore cortical activity in vivo following sensory deprivation, but it is unclear whether this recovery is uniform across all cells or specific to a subset of the network. To address this issue, we used chronic calcium imaging in behaving adult mice to examine the activity of individual excitatory and inhibitory neurons in the same region of the layer 2/3 monocular visual cortex following enucleation. We found that only a fraction of excitatory neurons homeostatically recover activity after deprivation and inhibitory neurons show no recovery. Prior to deprivation, excitatory cells that did recover were more likely to have significantly correlated activity with other recovering excitatory neurons, thus forming a subnetwork of recovering neurons. These network level changes are accompanied by a reduction in synaptic inhibition onto all excitatory neurons, suggesting that both synaptic mechanisms and subnetwork activity are important for homeostatic recovery of activity after deprivation.
منابع مشابه
A specific requirement of Arc/Arg3.1 for visual experience-induced homeostatic synaptic plasticity in mouse primary visual cortex.
Visual experience scales down excitatory synapses in the superficial layers of visual cortex in a process that provides an in vivo paradigm of homeostatic synaptic scaling. Experience-induced increases in neural activity rapidly upregulates mRNAs of immediate early genes involved in synaptic plasticity, one of which is Arc (activity-regulated cytoskeleton protein or Arg3.1). Cell biological stu...
متن کاملPersistence of experience-induced homeostatic synaptic plasticity through adulthood in superficial layers of mouse visual cortex.
It is well established that sensory cortices of animals can be modified by sensory experience, especially during a brief early critical period in development. Theoretical analyses indicate that there are two synaptic plasticity mechanisms required: input-specific synaptic modifications and global homeostatic mechanisms to provide stability to neural networks. Experience-dependent homeostatic sy...
متن کاملSynaptic Scaling and Homeostatic Plasticity in the Mouse Visual Cortex In Vivo
Homeostatic plasticity is important to maintain a set level of activity in neuronal circuits and has been most extensively studied in cell cultures following activity blockade. It is still unclear, however, whether activity changes associated with mechanisms of homeostatic plasticity occur in vivo, for example after changes in sensory input. Here, we show that activity levels in the visual cort...
متن کاملHomeostatic Regulation of Eye-Specific Responses in Visual Cortex during Ocular Dominance Plasticity
Experience-dependent plasticity is crucial for the precise formation of neuronal connections during development. It is generally thought to depend on Hebbian forms of synaptic plasticity. In addition, neurons possess other, homeostatic means of compensating for changes in sensory input, but their role in cortical plasticity is unclear. We used two-photon calcium imaging to investigate whether h...
متن کاملTime-course and mechanisms of homeostatic plasticity in layers 2/3 and 5 of the barrel cortex
Recent studies have shown that ocular dominance plasticity in layer 2/3 of the visual cortex exhibits a form of homeostatic plasticity that is related to synaptic scaling and depends on TNFα. In this study, we tested whether a similar form of plasticity was present in layer 2/3 of the barrel cortex and, therefore, whether the mechanism was likely to be a general property of cortical neurons. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 86 شماره
صفحات -
تاریخ انتشار 2015